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ABSTRACT

In this paper, a number of well-established
population-based optimisation methods i.e.
Genetic Algorithms, Simulated Annealing and
Population Based Incremental Learning are
briefly reviewed and compared in terms of their
philosophical basis. The use of the optimisation
methods  for  topology  optimisation is
demonstrated. The paper also presents an efficient
numerical technique to prevent checkerboard
formation in topology design. From the optimum
solutions obtained using the various optimisation
methods with many design conditions, the
performances of the methods are compared and
discussed.

INTRODUCTION

Topology optimisation is a special type of
structural shape optimisation. This design process
is employed when designers need to find a new
structural configuration for particular use as
shown in figure 1. In topology optimisation
problem, with a given design domain, the task is
to find the best structural layout that gives the
optimum of desired objective functions e.g.
weight, system compliance, deflection and natural
frequency whilst fulfilling design constraints [1].
In numerical process, by the use of Finite Element
Method (FEM) for structural analysis, topology
optimum design can be performed by discretising
a structure into a number of connected finite
elements. Design variables determine the
distribution of element density, which means that
elements with nearly zero density represent holes
on the structure whereas other elements indicate
the existence of structural material.

One of the most preferable optimisation
methods for topology design is Optimality
Criteria Method (OCM) [2] as it is arguably the
most powerful method for this task. Also, the
classical gradient-based methods such as

Sequential Linear Programming (SLP) and the
Method of Moving Asymptotes (MMA) were
implemented [1]. There have been a few
publications concerning the applications of
population-based methods for topology design
and most of them referred to Genetic Algorithms
(GAs) e.g. [3-5]. Despite the capability of
reaching a global optimum of GAs, the methods
seem to be ineffective when used in topology
design because they are time consuming and have
no consistency. This is due to the large number of
topological design variables and, therefore, a huge
number of function evaluations are needed when
performing GAs for such design. However, it
cannot be totally concluded that all the
population-based or evolutionary methods are
inferior since other evolutionary methods are
rarely applied.

Figure 1 Topology Optimisation

This paper demonstrates the use of population-
based optimisation methods, often called
evolutionary algorithms, for solving structural
topology optimisation. As four-node quadrilateral
membrane finite element is used for structural
analysis, the checkerboard suppression scheme is
also performed. Structural topology is presented
by binary string whereas the objective function is
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the weighted sum of structural mass, compliance
and checkerboard penalty. The evolutionary
algorithms consist of Genetic Algorithms with
three different sets of GA operators, Simulated
Annealing (SA), Population Based Incremental
Learning (PBIL) and Stud-Genetic Algorithm
(Stud-GA). The methods are briefly reviewed and
implemented on a number of topology
optimisation problems. The main investigation is
aimed at comparing the performance of
evolutionary methods that used elites to create
new population versus the methods that use
traditional crossover to create population. The
optimum results obtained from using the various
methods are obtained, illustrated and compared in
terms of convergence rate and consistency.

POPULATION-BASED OPTIMISATION
METHODS

Population-based methods sometimes referred
to as Evolutionary Algorithms (EAs) are the
optimisation methods that search for optima based
upon evolutionary mechanisms [6]. The methods
start the search with a group of initial solutions
called population and the population are then
evolved, in some manners, generation by
generation until reaching the optimum. The
evolutionary methods presented here are as
follows:

Genetic Algorithms

Genetic algorithms are probably the best
known of the evolutionary algorithms. This
approach can be best thought of as mimicking
Darwinian natural selection in that a population of
solutions (genes) is generated and then the next
generation is produced by mating pairs of these
genes. The genes have the opportunity of being
selected based on their merit. The selected genes
are reproduced by means of crossover and
mutation yielding the new population or next
generation. The next generation is iteratively
evolved until an optimum is achieved [7].

For the GA in this paper, topology design
variables are parameterised by a series of binary
strings. A new population can be obtained by two
genetic operators that are crossover and mutation.
In crossover operator, a pair of genes is selected
based upon a probability according to their
fitness. The so-called one-point crossover is
illustrated in figure 2. A cutting point is randomly
selected and the second part of the pairs is swap
resulting in the new pair of offspring. With this
concept, multiple-point crossover can be achieved
by randomisation of multiple cutting points and

exchanging some cutting parts of parents’ genes.
This process is repeated until the offspring have
the same size as their parents. Note that,
generally, each pair of selected gene is allowed to
be crossed over by the predefined probability.

Parent 1: 100|111
Parent 2: 010/100

Offspring 1: 100|100
Offspring 2: 010|111

Figure 2 one-point crossover in GAs

For mutation, an element in a gene is chosen
at random and is changed from ‘1’ to ‘0’ (or vice
versa) this operator is also allowed to take place
on each current gene by a given probability as
crossover operator. In addition to these two main
operators, the best genes from each generation are
saved directly to the next generation, ensuring
that the best solutions are not lost and some new-
blood, randomly created genes, are the additional
members to the new population so as to prevent
premature convergence.

Stud-Genetic Algorithm

A slight modification of classical GA is called
Stud-GA which claims to improve significantly
the performance of the traditional GA whilst
maintaining its simplicity and binary string
representation [8]. Rather than maintaining a
large population of different solutions, the best
gene (stud) from an initial population is chosen
and then the new population is generated by
mutating the stud until the offspring have the
same size as the initial population. After
mutation, bit positions of each offspring are
allowed to be shuffled by the given probability.
The process is repeated until convergence is
reached

Population-Based Incremental Learning
Population Based Incremental Learning
(PBIL) [9] has a different feature from GA in that
the population is represented by the probability
vector of being ‘1’ of each bit position of binary
strings. Figure 3 shows probability vectors used in
PBIL where row vectors of the population matrix
represent genes. It is shown that one probability
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vector can form a variety of populations. A
probability of 1 indicates that all the bits in a
column of the population are ‘1’ whereas a
probability of ‘0’ means that the column is full of
ZEeros.
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Figure 3 Populations and their probability vectors

Initially, the search procedure starts with the
initial probability vector whose elements are full
of “0.5°. An initial population corresponding to
the probability vector is created. The best gene is
selected and the next probability vector p™ is

found using the relation
I)[new =1)lold(1_LR)+b[LR (1)

where LR is called the learning rate, a value
between 0 and 1 that is gradually reduced during
the optimisation process and b, is the i bit of the

best gene. It is also useful to apply mutation to the
probability vector at some predefined probability
such that

P = P (1-ms)+rand(0or l)ms  (2)

where ms is the amount of shift used in the
mutation. The best gene is also carried over into
the next generation, as with the traditional GA
approach. The probability vector is updated
iteratively until convergence is reached.

Simulated Annealing

Simulated annealing [10&11] sometimes is
classified to be evolutionary method as GA and
the others. The method is based upon mimicking
the random behaviour of molecules during the
annealing process, which involves slow cooling
from a high temperature. As the temperature
cools, the atoms line themselves up and form a
crystal, which is the state of minimum energy in

the system. However, if the metal is cooled too
quickly, the minimum energy state is not reached.
The basic algorithm follows and is wusually
formulated as a minimisation problem.

The search procedure of SA is to start with a
single initial solution with fitness f is taken and
then adjusted in some manner to produce a
candidate solution with fitness f'. If ' < f, then /' is
taken onto the next iteration, however, in cases
that /' > £, the candidate value may still be chosen
depending upon the Boltzmann probability

Pr= e(f'ﬁf)/T (3)

where T is the annealing temperature, which
will be gradually reduced during the process. The
key role of SA search is that the discovery of a
new candidate. As traditionally SA is the method
without using derivatives, the candidate is
created, by mutating on a current solution. The
more effective procedure is that creating a set of
new candidates and then selecting the best of
them to be compared with their parent.

TOPOLOGY OPTIMSATION USING
EVOLUTIONARY ALGORITHMS

One of the most well-known topology
optimisation problems is the classical compliance
minimisation of plate structures, which can be
posed as:

Min: ¢(p) = U'KU 4)
Subject to m(p) < my

where the vector of design variables p is the
vector of element densities of the discretised
structure, ¢ is structural compliance, U is
structural displacement due to applied forces F, K
is structural stiffness matrix and m is structural
mass.

Since most of the population-based methods
were developed for unconstrained optimisation,
for simplicity, the compliance minimisation can
be modified to be weighted-sum objective
function as

Min: fip) = w U'KU+w,m  (5)

where w; are the weighting factors. It has been
found that, with a proper set of weighting factors
[12], this design strategy is as effective as the
constrained problem in (4). As the structural
analysis is carried out by membrane finite
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element analysis, it should be noted that
checkerboard patterns could occur on the
resulting topology design because of numerical
instability. To prevent such undesirable
phenomenon,  additional  objective  called
checkerboard penalty Cb [13] is introduced to the
optimisation problem. The checkerboard penalty
is the slight modification of that presented in [14].
The design problem is, therefore, of the form:

Min: fip) = w,U'KU + wym + wsCh ~ (6)

From a discretised rectangular design domain
as shown in figure 4, let the structure have
(m+1)x(n+1) elements. Thus, there are mxn
interior nodes as shown and, at each interior node,
there are 4 elements surrounding it. At a current
interior node, if the 4-element density pattern
matches any of the two cases in figure 5, the local
checkerboard penalty value is one, otherwise, it is
Zero.

i

1, case#l and #2 7
ch, = (7)
0, otherwise

The total checkerboard penalty value, Cb, of a

typical structure can be computed as
Ch=Sch, " ®)
i=1

It can be concluded that Ch = 0 represents a
topology without checkerboard which is the
minimum point of the penalty function.

n+l

Y
1

Figure 4 Discretised structure

Cb,':l

Cbizl

Figure 5 Patterns to be penalised

As being universal methods, any aspect of
design variables can be used with EAs. For this
work, topology of a structure is represented by
series of binary strings with the same size as the
number of structural elements. A bit ‘1’ gives
material existence while ‘0’ represents void in the
structure. Also note that in this paper ‘1’ means 1
unit of density whereas a bit ‘0’ represents
0.000001 unit of density in stead of zero-
thickness so as to prevent singularity in global
stiffness matrix of structural system.

TESTING CASES OF DESIGN

In this study, the population-based methods
are implemented on the compliance minimisation
design of a classical MBB beam shown in figure
6. The beam, made up of material with £ =
200x10° N/m* and v= 0.3, is meshed to be 20x10
finite elements. The point load is set to be 100 N.
The optimisation algorithms that are used to solve
the problem are:

- GAOI1 genetic algorithm with probability of
crossover and mutation being 0.9 and 0.1
respectively.

- GAO02 genetic algorithm with probability of
crossover and mutation being 0.1 and 0.9
respectively.

- GAO3 genetic algorithm with probability as
used in GAOI plus evolutionary direction operator
[15].

- StudGA with 0.01 probability to shuffle
gene.

- PBIL with 0.01 probability of mutation.

- SA with initial temperature 7 = 10 and the
predefined final temperature 77 = 0.001.
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Figure 6 MBB beam

The design test cases are categorised by
objective function, number of iterations or
generations and population size as follows:

1. The objective function  excludes
checkerboard penalty as in (5) where [wy,w,] =
[0.25 0.75]. The number of generations and
population size for the optimisation methods are
100 and 50 respectively, in exception of SA
which uses 250 loops whereas 20 candidates to
challenge their parent are created on each
iterations.

2. The objective function includes
checkerboard penalty as in (6) where [w; w, ws] =
[0.14 0.43 0.43]. The number of iterations and
population size are the same as in case 1.

3. The objective function is the same as in
case 2. All the methods are performed with the
same number of iterations and population size i.e.
250 iterations and 20 individuals in one
generation. This design case is set to examine the
effect of population size on evolutionary search.

In each design case, all the methods start with
the same initial population. Each method is
applied to solve each design case five runs and
the best result of each run is taken as the optimum
result. This means that the mean value of five
optimum objectives measures the convergence
rate while the standard deviation of the optimum
objectives measures the consistency of the
optimisation methods. Note that population size
and generations are intentionally set for
benchmarking the performance of the methods
which means that some methods may not reach or
even close to the strict optimum. The reason of
using those design parameters is to point out the
superiority of some particular methods to the
others on this type of design.

NUMERICAL RESULTS

The numerical results of case 1 are shown in
table 1 and illustrated in figure 7&8. The search
history of the methods is shown in figure 9. From
the table, Stud-GA is most consistent and also
gives the best convergence rate with SA comes
second.

Table]l Optimum results of case 1
No. GAO01 GAO2 GAO03 StudGA PBIL SA
1 1.8131 1.6314 1.7549 1.4757 1.5664 1.4806
2 1.8026 1.6145 1.7464 1.4774 1.5511 1.4852
3 1.7971 1.6160 1.7066 1.4899 1.5747 1.4756
4
5

1.8260 1.6180 1.6726 1.4917 1.5868 1.4894
1.8092 1.6413 1.6862 1.4880 1.5423 1.4982
AV 1.8096 1.6242 1.7133 1.4845 1.5643 1.4858
STD | 0.0099 0.0104 0.0324 0.0066 0.0160 0.0077

Test Case No.

#1

#4

#5

GAO1 GA02 GA03

Figure 7 Optimum results of case 1, GAO1 GA02
GAO03

Test Case No 1

#1

#2

#a

Stud GA PBIL SA

Figure 8 Optimum results of case 1, Stud-GA
PBIL SA
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‘Search History Case 1 Test Case No. 2

GA02 - -
< S A i
GrO3 18 - ———— m m m
— = #3
120\ 1‘0 20 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 160
StudGA 4 5| -
b W W o JUETEN,  EEEEe T,
PBIL S S _ o
R e o AT, AR AT
\\\\
SA 150 StudGA PBIL SA
10 50 160 15‘:0 260 25‘0
teration Figure 11 Optimum results of case 2, Stud-GA
Figure 9 Search history of case 1 PBIL SA
Search History Case 2
In design test case number 2, the results are in -
table 2 and the optimum results from five 2 o 2 w0 a0
. . . ‘\M
attempts are illustrated in figure 10&11 whilst saz 18 = _
. .. . 16 . . : ! L v . v . ]
search history is in figure 12. The most consistent Ho L B W e ® @ w0 600
. . . GAO3 L
is GAO3 while SA gives the best convergence T ‘ 3
2 \\10 20 30 40 50 60 70 80 90 100
rate. Although the GAQ3 has the !owest standard e S
deviation from five tries the obtained results are N N e ——————
. . . 0 __ 10 20 30 40 50 60 70 80 90 100
still far from the real optimum. Therefore, SA is oL, e
the best in overall. W W A % 8w
SA 15- S— — —_—
. ‘

L L L |
0 50 100 150 200 250

Iteration

Table 2 Optimum results of case 2

No. | GAOl GA02 GAO03 StudGA PBIL SA Figure 12 Search history of case 2
1 1.8411 1.7120 1.7755 1.5411 1.6632 1.5026
2 1.8235 1.6811 1.7647 1.5485 1.7423 1.5592
3 1.8284 1.7221 1.7598 1.5630 1.6503 1.4935 h lts of . 1 i
4 1.8123 1.7170 1.7811 1.6225 1.7167 1.5069 The results of case 3 are in table 3, figure
5 1.8320 1.7100 1.7678 1.5483 1.6474 1.4976 13&14 and search history in figure 15. In this test
AV 1.8274 1.7085 1.7698 1.5647 1.6840 1.5120 case, the best method in terms of convergence
STD | 0.0095 0.0143 0.0076 0.0298 0.0384 0.0240 rate and consistency is SA.

Test Case No. 2
- R T Table 3 Optimum results of case 3

No. GAO1 GAO02 GAO03 StudGA PBIL SA

1 1.7595 1.6029 1.7514 1.5298 1.7382 1.4827
2 1.7752 1.6684 1.7146 1.5592 1.7914 1.5057
3 1.7634 1.6374 1.7640 1.6362 1.7932 1.4959
4

5

v T : e oy : 1.7325 1.5735 1.7147 1.5370 1.8440 1.4915
m m m 1.7750 1.5865 1.6996 1.6101 1.7873 1.5271
AV 1.7611 1.6137 1.7288 1.5745 1.7908 1.5006

« EEDEND SR TS STD | 0.0156 0.0347 0.0245 0.0418 0.0335 0.0152
» BN RN R
GAO01 GA02 GA03

Figure 10 Optimum results of case 2, GAO1
GA02 GAO3
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Test Case No. 3
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-

GAO1 GA02 GAO03

Figure 13 Optimum results of case 3, GAO1
GA02 GAO3

o AT
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Figure 14 Optimum results of case 3, Stud-GA

Search History Case 3
2
Gaol 18 == — —
16 -
5 50 100 150 200 250
GAO2 o
15 . L ]
5 50 100 150 200 250
—
GA03 18l T ———
s ———
16 | | | )
5 50 100 150 200 250
™~
StudGA
15 T T T —
50 100 150 200 250
2w
PEIL 4 -
16 - .
20 50 100 150 200 250
SA 45|

L L L )
0 50 100 150 200 250
Iteration

Figure 15 Search history of case 3

CONCLUSIONS AND DISCUSSIONS

From the numerical experiments, it can be
concluded that mutation operator is the more
powerful mechanism than crossover in topology
design of plate-like structures since the design

results obtained from Stud-GA and SA are
apparently superior to that obtained from the
classical GAs. This is also supported by GA02
overcoming GAOl and GAO3. The SA and Stud-
GA are equally good for topology design with SA
slightly better when dealing with checkerboard.
GAOI with crossover as the main operator is the
worst. GAO2 is the best out of the three GAs. The
evolutionary direction in [15] can enhance the
search performance of GA with crossover yet is
not implemented with mutation domination as
GAQ2. For the intermediate performance method
as PBIL, the search by this approach can be
affected by its population size which can be said
that the greater size yields the better designs.

The checkerboard penalty technique can
effectively prevent checkerboard patterns in
topology design. However, numerical experimens
in the prevoius work [13] showed that the proper
set of weighting factors [w; w, ws] needs to be
given so that the checkerboard-free topology
design is achievable. The higher value of wj;
normally results in the checkerboard-free
topology.

The methods that use elite or their best genes
for generating new population are better than that
uses traditional crossover as classical GAs.
However, it cannot be a definite conclusion as the
evolutionary methods are merely implemented on
one structural design problem.
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